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S E N S O R S

All-printed soft human-machine interface for robotic 
physicochemical sensing
You Yu†, Jiahong Li†, Samuel A. Solomon†, Jihong Min, Jiaobing Tu, Wei Guo, 
Changhao Xu, Yu Song, Wei Gao*

Ultrasensitive multimodal physicochemical sensing for autonomous robotic decision-making has numerous 
applications in agriculture, security, environmental protection, and public health. Previously reported robotic 
sensing technologies have primarily focused on monitoring physical parameters such as pressure and tempera-
ture. Integrating chemical sensors for autonomous dry-phase analyte detection on a robotic platform is rather 
extremely challenging and substantially underdeveloped. Here, we introduce an artificial intelligence–powered 
multimodal robotic sensing system (M-Bot) with an all-printed mass-producible soft electronic skin–based 
human-machine interface. A scalable inkjet printing technology with custom-developed nanomaterial inks was 
used to manufacture flexible physicochemical sensor arrays for electrophysiology recording, tactile perception, 
and robotic sensing of a wide range of hazardous materials including nitroaromatic explosives, pesticides, nerve 
agents, and infectious pathogens such as SARS-CoV-2. The M-Bot decodes the surface electromyography signals 
collected from the human body through machine learning algorithms for remote robotic control and can perform 
in situ threat compound detection in extreme or contaminated environments with user-interactive tactile and 
threat alarm feedback. The printed electronic skin–based robotic sensing technology can be further generalized 
and applied to other remote sensing platforms. Such diversity was validated on an intelligent multimodal robotic 
boat platform that can efficiently track the source of trace amounts of hazardous compounds through autonomous 
and intelligent decision-making algorithms. This fully printed human-machine interactive multimodal sensing 
technology could play a crucial role in designing future intelligent robotic systems and can be easily reconfigured 
toward numerous practical wearable and robotic applications.

INTRODUCTION
The development of advanced autonomous robotic systems that 
mimic and surpass human sensing capabilities is critical for envi-
ronmental and agricultural protection as well as public health and 
security surveillance (1–4). In particular, robotic tactile perception 
allows for successful task implementation while avoiding harm to 
the device, user, and environment (4–6). In addition, autonomous 
trace-level threat detection prevents human exposure from toxic 
chemicals when operating in extreme and hazardous environments 
(7, 8). Such field-deployable, on-the-spot detection tools can be 
applied for the rapid identification of minute concentrations of 
nitroaromatic explosives that pose a health and security threat if 
they are unchecked (9–11). There are numerous toxic compounds 
that need to be tightly regulated in health and agriculture, such as 
organophosphates (OPs): pesticides or chemical warfare nerve 
agents that can cause neurological disorders, infertility, and even 
rapid death (12, 13). Such tools can be extended to monitor patho-
genic biohazards such as SARS-CoV-2 without direct human ex-
posure, which could play a crucial role in combating infectious 
diseases, especially because the current COVID-19 pandemic re-
mains uncontrolled around the world (14–16). These strong demands 
for autonomous sensitive hazard detection have motivated the 
development of a controllable human-machine interactive robotic sys-
tem with both physical and chemical sensing capabilities for task 
performing and point-of-use analysis.

Because of its high flexibility and conformability, electronic skin 
(e-skin) presents itself as the ideal interface between electronics and 
the human/robot bodies. In literature, e-skin has demonstrated a 
wide range of physical and chemical sensing applications, ranging 
from consumer electronics, digital medicine, smart implants, to 
environmental surveillance (17–31). Despite such promise, several 
challenges exist for e-skin–based multifunctional robotic systems. 
Because most rapid detection approaches for hazardous compounds 
require manual solution-based sample preparation steps, integrat-
ing chemical sensors for autonomous remote dry-phase analyte 
detection onto an e-skin–based robotic sensing platform is extremely 
challenging and substantially underdeveloped, hindering e-skin’s 
capabilities for robotic interaction and cognition of the external world 
(7, 32). A robotic manipulator would require tactile, chemical, and 

Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineer-
ing and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.
*Corresponding author. Email: weigao@caltech.edu
†These authors contributed equally to this work.

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim  
to original U.S. 
Government Works

Movie 1. Overview of the all-printed human-machine interface toward robotic 
physicochemical sensing. 
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temperature feedback to handle arbitrary objects, collect target 
samples, and carry out accurate chemical analysis in extreme environ-
ments (33). Another problem for e-skin interfaces is that prepar-
ing high-performance sensors generally requires manual drop-casting 
modifications of nanomaterials, which can lead to large sensor vari-
ations (34). Now, there is a lack of scalable low-cost manufacturing 
approaches to prepare thin, ultraflexible, multifunctional robotic 
physicochemical sensor patches. Despite these concerns, there is a 
strong need for an efficient human-machine interface that can reli-
ably extract physiological features (35) as well as accurately control 
and receive real-time user-interactive feedback.

To address these challenges, we introduce here an artificial intel-
ligence (AI)–powered human-machine interactive multimodal 
sensing robotic system (M-Bot) (Fig. 1A and Movie 1). The M-Bot is 
composed of two fully inkjet-printed stretchable e-skin patches, 

namely, e-skin-R and e-skin-H, which interface conformally with 
the robot and human skin, respectively. The e-skins with powerful 
physicochemical sensing capabilities are mass producible and recon-
figurable and can be entirely prepared using a high-speed, low-cost, 
and scalable inkjet-printing technology with a series of custom-developed 
nanomaterial inks. Upon collecting physiological data, the machine 
learning model can decode the surface electromyography (sEMG) 
signals from muscular contractions (recorded by e-skin-H) for robotic 
hand control. Simultaneously, e-skin-R can perform proximity sensing 
and tactile and temperature perceptual mapping, alongside real-time 
hydrogel-assisted electrochemical on-site sampling and analysis of 
both solution-phase and dry-phase threat compounds including ex-
plosives [such as 2,4,6-trinitrotoluene (TNT)], pesticides (such as OPs), 
and biohazards (such as SARS-CoV-2 virus). Upon detection, real-time 
haptic and threat alarm feedback communications were achieved via 
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Fig. 1. AI-powered M-Bot based on a fully printed soft human-machine interface. (A) Schematic of the M-Bot that contains a pair of fully printed soft e-skins: e-skin-H 
(interfacing with the human skin) and e-skin-R (interfacing with the robotic skin) for AI-powered robotic control and multimodal physicochemical sensing with user- 
interactive feedback. T, temperature. (B and C) Photographs of the robotic skin–interfaced e-skin-R consisting of arrays of printed multimodal sensors. Scale bars, 3 cm. 
(D) Schematic illustration of rapid, scalable, and cost-effective prototyping of the kirigami soft e-skin-R using inkjet printing and automatic cutting. (E) Photograph of the 
human skin–interfaced soft e-skin-H with arrays of sEMG and feedback stimulation electrodes. Scale bar, 1 cm. (F) Schematic signal flow diagram of the M-Bot. In-Amp, 
instrumentation amplifier; HPF, high-pass filter; E, applied voltage; ES, electrical stimulation; SPU, signal processing unit. WE, CE, and RE represent working, counter, and 
reference electrodes of the printed chemical sensor, respectively.
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electrical stimulation of the human body with e-skin-H. The threat 
sensing capabilities of the M-Bot could pave the way for automated 
chemical sensing, facilitating machine- mediated decisions for a wide 
range of practical robotic assistance applications.

RESULTS
Design of the human-machine interactive e-skins
E-skin-R is composed of high-performance–printed nanoengineered 
multimodal physicochemical sensor arrays that can be placed on 
the palm and fingers of the robotic hand (Fig. 1, B and C). The 
entire sensor patch can be rapidly manufactured in a large-scale and 
low-cost method via a powerful drop-on-demand inkjet printing 
technology (Fig. 1D, fig. S1, and movie S1). On top of e-skin-R 
are engraved kirigami structures that provide high stretchability 
without conductivity changes under a 100% strain, which is crucial 
for any robotic hand with high degrees of freedom in movement. 
E-skin-H consists of four sEMG electrode arrays (channels), alongside 
a pair of electrical stimulation electrodes, which can be fabricated 
similarly with inkjet printing followed by transfer printing onto a 
stretchable polydimethylsiloxane (PDMS) substrate (Fig. 1E). With 
assistance from AI, multimodal physicochemical sensing, and 
electrical stimulation–based feedback control, e-skin-R and e-skin-H 
form a closed-loop human-machine interactive robotic sensing 
system (Fig. 1F).

Fabrication and characterization of the fully inkjet-printed 
multimodal sensor arrays
The multimodal physicochemical sensor arrays on e-skin-R were 
fabricated via serial printing of silver (interconnects and reference 
electrode), carbon (counter electrode and temperature sensor), 
polyimide (PI) (encapsulation), and target-selective nanoengineered 
sensing films (tactile sensor and biochemical sensing electrodes) 
(Fig. 2A). Customized nanomaterial inks were developed to meet 
the viscosity, density, and surface tension requirement for inkjet 
printing and to achieve the desired analytical performance (Figs. 2 
and 3 and table S1). The chemical sensors were coated with a soft 
gelatin hydrogel that was loaded with an electrolyte or redox probe to 
facilitate target analyte sampling and analysis in situ (Supplementary 
Methods and fig. S4). The inkjet-printed carbon electrodes (IPCEs) 
showed reproducible electroanalytical performance and rapid response 
for on-site detection of dry-phase analytes (redox probe Fe3+/Fe2+ 
was used in the hydrogel as an example) (fig. S5). The detection area 
or resolution can be enhanced by increasing either hydrogel size 
(fig. S6) or electrode density (fig. S7).

To effectively manipulate objects and to avoid harming either 
the e-skin or the object, real-time tactile feedback was enabled by 
in corporating a piezoresistive pressure sensor based on a printed 
silver nanowires (AgNWs)/nanotextured PDMS (N-PDMS) sensing 
film (Fig. 2, B and C). Such tactile sensation provides the robot with 
the haptic capability to grasp and handle samples. The geometry 
changes of the AgNWs/N-PDMS in response to a pressure load 
change the sensor’s conductance (Fig. 2D and fig. S8). The pressure 
sensor displayed stable performance under repetitive pressure load-
ing (Fig. 2E and fig. S8).

To demonstrate the feasibility of using the printed biosensors for 
hazardous chemical detection, a standard chemical explosive (TNT), 
an OP nerve agent simulant (paraoxon-methyl), and a biohazard 
pathogenic protein from the SARS-CoV-2 virus were chosen. The 

detection of TNT was achieved using a Pt-nanoparticle–decorated 
graphene electrode, which was prepared by droplet inkjet printing 
of aqueous graphene oxide (GO), Pt ions, and propylene glycol and 
subsequently subjected to thermal reduction. The Pt-graphene 
showed superior electrocatalytic performance compared with 
classic carbon and graphene electrodes (Fig. 2, F to H, and fig. S9). 
The reduction of p-NO2 to p-NH2 catalyzed by the Pt-graphene can 
be detected via negative differential pulse voltammetry (nDPV) 
(9, 36). The obtained reduction peak amplitude in the nDPV 
voltammograms showed a linear relationship with the target TNT 
concentrations with a sensitivity of 0.95 A cm−2  ppm−1 and a 
detection limit of 10.0 ppm (Fig. 2I). Note that a custom voltammo-
gram analysis with an automatic peak extraction strategy was used 
by the robot to analyze the original nDPV curves as illustrated in 
fig. S10. When integrated onto a robotic hand, the hydrogel-coated 
Pt-graphene sensor could sample the dry-phase TNT efficiently and 
provide a stable current response within 3 min (Fig. 2J); the TNT 
sensor can be regenerated in situ through repetitive nDPV scans to 
deplete the sampled analyte molecules toward continuous robotic 
sensing (fig. S11). For OP analysis, Pt-graphene and carbon have 
low electrochemical activity, because Zr-based metal-organic frame-
work (MOF-808) was reported to have strong interaction with OPs 
(37, 38). Thus, the printed MOF-808–modified gold nanoparticle 
electrode (MOF-808/Au) was selected to achieve efficient non-
enzymatic OP reduction at a relatively low voltage (Fig. 2, K to M, 
and fig. S12). In this way, the catalyzed reduction of paraoxon-methyl 
can be monitored via nDPV using the MOF-808/Au sensors with a 
sensitivity of 1.4 A cm−2 ppm−1 and a detection limit of 4.9 ppm 
(Fig. 2N). In addition to high sensitivity, these printed sensors could 
also perform high-concentration threat analysis (fig. S13). Similar 
to TNT detection, a 3- to 4-min sampling time was found to be 
sufficient for stable robotic dry-phase OP analysis (Fig. 2O). The 
Pt-graphene TNT sensors and MOF-808/Au OP sensors showed 
high selectivity over other nitro compounds (figs. S14 and S15). 
Because of the excellent stability of the catalytic performance of 
Pt-graphene and MOF-808/Au, the printed sensors can perform 
continuous TNT and OP analysis (fig. S16).

Label-free SARS-CoV-2 virus detection was demonstrated from 
a printed multiwalled carbon nanotube (CNT) electrode that was 
functionalized with antibodies specific to SARS-CoV-2 spike 1 pro-
tein (S1) (Fig. 2, P and Q). The CNT layer had a high electroactive 
surface area for sensitive electrochemical sensing while providing 
rich carboxylic acid functional groups for amine-containing affinity 
probe immobilization to achieve versatile biohazard sensing (39–41). 
The successful surface modification of the S1 sensor was confirmed 
after each surface immobilization step (Fig.  2R and figs. S17 and 
S18). Parts-per-billion level S1 sensing was performed on the basis 
of the signal change of the electroactive redox probe (Fe3+/Fe2+) 
caused by the blockage of the electrode surface due to the S1 protein 
binding (Fig. 2S). The response variations of such S1 sensors can be 
further reduced in the future with an automatic surface modifica-
tion process. The SARS-CoV-2 S1 sensor shows high selectivity 
over other viral proteins as illustrated in fig. S19. On-the-spot 
robotic S1 protein detection was successfully demonstrated using a 
collection and detection hydrogel containing the redox probe on 
the sensor that touched a surface containing a dry blot of the S1 
protein (Fig.  2T). Although the nonspecific adsorption could 
potentially reduce the selectivity of the hydrogel detection process 
(fig. S20), the semiquantitative data conveniently and automatically 
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obtained on site by the sensor could still provide the users rapid, 
real-time feedback and alert on the presence of biohazard.

To ensure accurate hazard detection in extreme operational 
environments, a printed carbon-based temperature sensor was 
designed for on-site temperature sensing and chemical sensor cali-
bration during operation (fig. S21). All printed sensors maintained 
similar performance under and after repetitive mechanical bending 
tests, indicating their high mechanical stability (fig. S22). The freshly 
prepared hydrogels can be stored at 4°C in a moist chamber for 

more than 1 week and maintain similar sensing performance (fig. 
S23). To minimize the influence of the shearing and normal forces 
on the sensor performance, the AgNWs/N-PDMS pressure sensor 
was designed to form a protection microwell for each hydrogel- 
coated biosensor and to facilitate reliable chemical analyte sample 
collection (figs. S24 and S25); moreover, the tactile feedback from 
the AgNWs/N-PDMS pressure sensor could ensure stable electro-
chemical sensing performance (contact pressure was maintained 
between 0 and 500 Pa during operation).

-4

-1

2

5

-0.6 -0.2 0.2 0.6

-8

-4

0

4

-0.4 0 0.4 0.8

0

0.4

0.8

1.2

-0.1 0.1 0.3 0.5

j(
A 

cm
-2

)

Potential (V)

EDC
CNT

AbC
BSA
S1

j (
m

A 
cm

-2
)

Potential (V)

j (
m

A
 c

m
-2

)

Potential (V)

Carbon
Au

-1

0

1

-0.1 0.2 0.5

j (
m

A
 c

m
-2

)

Potential (V)
j (

m
A 

cm
-2

)

Potential (V)

Carbon
Pt-graphene

MOF-808/Au

-1

0

1

-0.1 0.2 0.5

0

20

40

0 20 40 60 80 100

0

0.1

0.2

-0.1 0.1 0.3 0.5

-75

-55

-35

-15

-0.5 -0.4 -0.3 -0.2 -0.1

-70

-35

0

-90

-60

-30

0

-0.5 -0.4 -0.3 -0.2
-35

-20

-5

0 1 2 3 4

60
40
20
10

-5

5

15

25

35

0 300 600 900

Potential (V)

Time (s)

C
ur

re
nt

 (m
A)

B C D E

P Q R S

A

G H I JF

K L M N O

T

[OP] (ppm)

10
15
25
37.5
50

S1 (ppb)

j (
%

)

CH3

NO2

O2N NO2

CH3

NH2

O2N NO2

j (
µA

 c
m

-2
)NO2

OPO
O

O

H2N

O P
O

O
O

Biohazards

CNT

AbC/EDC

MOF-808

Explosives

Nerve agents

Potential (V)

j (
µA

 c
m

-2
)

Time (min)

100

j (
µA

 c
m

-2
)

Au

-90

-45

0

0 60 120

j (
µA

 c
m

-2
)

-50

-25

0

0 1 2 3 4 5
Time (min)

j (
µA

 c
m

-2
)

Carbon
Ag

Ag
Carbon

Pt-graphene

Ag
Carbon

20 ppm
15 ppm

40 ppm
24 ppm

0 200 400 600

C
ur

re
nt

 (m
A)

Time (s)

0

10

TNT

OP

[TNT] (ppm)

j (
µA

 c
m

-2
)

0 min with S1
10 min with S1

j (
m

A 
cm

-2
)

Potential (V)

Hydrogel

Temperature
sensorTactile

sensor

TNT

OP

SARS-CoV-2 0 min
10 min

e-

e-

0 25 50

Pressure

N-PDMS
AgNWs

R1 R2 R3

Ag

0 Pa

100 Pa

50 Pa

25 Pa

75 Pa

0

30

60

0 50 100
P (Pa)

i(
m

A
)

Fig. 2. Characterization of the fully inkjet-printed multimodal sensor arrays on the e-skin-R. (A) Photograph of a multimodal flexible sensor array printed with 
custom nanomaterial inks that consists of a temperature sensor, a tactile sensor, and an electrochemical sensor coated with a soft analyte-sampling hydrogel film. Scale 
bar, 5 mm. (B and C) Schematic (B) and SEM image (C) of the printed AgNWs/N-PDMS tactile sensor. Scale bar, 1 m. (D and E) Response of a tactile sensor under varied 
pressure loads (D) and repetitive pressure loading (E). (F and G) Schematic (F) and SEM (G) of the printed Pt-graphene electrode for TNT detection. Scale bar, 4 m. 
(H) Cyclic voltammograms (CVs) of an IPCE and a printed Pt-graphene electrode in 0.5 M H2SO4 and in 5 mM K3Fe(CN)6 (inset). j, current density. (I) nDPV voltammograms 
and the calibration plots (inset) of TNT detection using a Pt-graphene electrode. (J) Dynamics of robotic fingertip detection of dry-phase TNT using a Pt-graphene sensor. 
(K and L) Schematic (K) and SEM image (L) of the printed MOF-808/Au electrode for OP detection. Scale bar, 100 nm. (M) CVs of an IPCE, a Au electrode, and a MOF-808/
Au electrode in McIlvaine buffer and in 5 mM K3Fe(CN)6 (inset). (N) nDPV voltammograms of the OP detection. Inset: The calibration plots. (O) Robotic fingertip detection 
of dry-phase OP using a MOF-808/Au sensor. (P and Q) Schematic (P) and SEM image (Q) of the printed CNT electrode for SARS-CoV-2 detection. Scale bar, 250 nm. 
(R) DPV voltammograms of a printed CNT electrode in 5 mM K3Fe(CN)6 after each surface immobilization step. EDC, 1-ethyl-3-(3-dimethylamonipropyl)carbodiimide; AbC, 
capture antibody. (S) Calibration plots of the CNT-based sensor for S1 detection. j, percentage DPV peak current changes after target incubation. (T) Response of a CNT 
sensor in the presence and absence of dry-phase S1. All error bars represent the SD from three sensors.
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Evaluation of e-skin-H for AI-assisted  
human-machine interaction
E-skin-H acts as a human-machine interface for autonomous 
robotic control and object manipulation (Fig. 3A). In particular, 
e-skin-H records neuromuscular activity, which provides an intuitive 
interface to perform hand gesture recognition, through its inkjet- 
printed, PDMS-encapsulated, four-channel, three-electrode sEMG 
arrays (Fig. 3, B and C, and fig. S26, A to C). Analyzing the interfa-
cial contact with the skin, e-skin-H demonstrates high stretchability 
with good mechanical compliance during physical activities through 

its serpentine structure to provide reliable sEMG recordings (fig. 
S26, D to I).

Upon signal acquisition, various machine learning algorithms 
were evaluated for accurate gesture recognition including linear 
regression, random forest, artificial neural networks, support vector 
machines (kernels: radial, sigmoid, linear, and polynomial), and 
k-nearest neighbors (KNNs). Each algorithm was shown to extract 
motor intention from sEMG signals, acting as a bridge between con-
scious thought and prosthetic actuation. Of all the machine learn-
ing algorithms, the KNN model provided the highest prediction 
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Fig. 3. Evaluation of the e-skin-H for AI-assisted human-machine interaction. (A) Schematic of machine learning–enabled human gesture recognition and robotic 
control. (B and C) Schematic (B) and photograph (C) of a PDMS encapsulated soft e-skin-H with sEMG and electrical stimulation electrodes for closed-loop human-interactive 
robotic control. Scale bar, 1 cm. (D) sEMG data collected by the four-channel e-skin-H from six human gestures. (E) Classification confusion matrix using a KNN model 
based on real-time experimental data. White text values, percentages of correct predictions; red text values, percentages of incorrect predictions. (F) A SHAP decision plot 
explaining how a KNN model arrives at each final classification for every data point using all five features. Each decision line tracks the features contributions to every 
individual classification; each final classification is represented as serialized integers (that map to a hand movement). Dotted lines represent misclassified points. (G to 
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an object. (K) Current applied on a participant’s arm during the feedback stimulation.
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accuracy for all six hand gestures with an overall mean accuracy 
across 5000 randomly selected training data of 97.29 ± 1.11% based 
on real-time experimental results collected from a human participant 
(Fig. 3, D and E, and fig. S27). The next best model was the random 
forest classifier, which was found to have a similar average classifi-
cation accuracy except with a higher variance. The KNN model was 
able to provide high-accuracy recognition of gestures with different 
angles when applying the e-skin-H to other body parts such as the 
neck, lower limb, and upper back—each time achieving an accuracy 
of greater than 90% (figs. S28 and S29).

For each gesture, five features were extracted from the associated 
peak in the root mean square (RMS)–filtered sEMG data (fig. S30): 
peak height (PH), peak standard deviation (STD), maximum slope (MS), 
peak average (PA), and peak energy (PE) (Supplementary Methods). 
The relevance of each feature and channel in the prediction method 
was further evaluated using Shapley additive explanation (SHAP) 
values (42). Through the SHAP values and the KNN accuracy, it 
was determined that PH was the most important feature for accu-
rate gesture classification (Fig. 3F and fig. S31). When considered 
alongside PH, SD and PA both increased the classification accuracy, 
with SD being the most beneficial (figs. S31 and S32). In terms of 
channels, it was found that three EMG channels were sufficient to pro-
vide a high gesture accuracy of 96.31 ± 1.25%. Adding a fourth chan-
nel was beneficial but not statistically significant (tables S2 and S3).

With the KNN algorithm, the robot can imitate the user’s 
gesture in millisecond-level time for automatic object manipulation. 
The data acquisition and signal processing time delay to determine 
a gesture were around 200 ms, well below the required time for 
optimal real-time robotic control (43). This was achieved using a 
sampling rate of 534 Hz and analyzing the data in batches of 100 
points. The M-Bot’s time delay was substantially reduced by training 
the KNN model on only half of any sEMG signal for gesture recog-
nition. By reducing the required data needed to determine a gesture, 
the machine learning model was able to predict the movement 
almost immediately after the gesture was complete.

The AI-powered e-skin-H–enabled gesture recognition provides a 
framework for online multidirectional robotic control with high- 
accuracy remote object manipulation (as illustrated in Fig. 3, G to I, 
and movie S2). After object contact, recognition, and positive threat 
detection, tactile and alarm feedback can be activated to inform the 
user of any potential danger using a pulsed current load between the 
two stimulation electrodes (Fig. 3J). To facilitate safe robotic handling 
and to protect e-skin-R from uncontrolled collisions, a laser proxim-
ity sensor was integrated into the robotic hand to reduce the actuation 
speed as the hand approaches a barrier (<10 cm) (Fig. 3K and fig. S33).

Evaluation of the M-Bot in human-interactive robotic 
physicochemical sensing
With delicate and precise control, the human-machine interactive 
M-Bot was successfully evaluated for fingertip point-of-use robotic 
TNT detection (fig. S34 and movie S3). The multimodal sensor data 
could be captured in real time using a portable multichannel poten-
tiostat, wirelessly transmitted to the mobile phone, and displayed 
on the cellphone app (fig. S34 and movie S3). The M-Bot was also 
able to perform object grasping and multispot tactile and chemical 
sensing (Fig. 4, A to D, and movie S4). Multiplexed physicochemical 
data were simultaneously recorded and automatically processed 
without signal interferences (fig. S35). In an example demonstration, 
seven AI-assisted gesture-controlled steps were used in sequence to 

control the robotic hand as it approached, grasped, and released a 
spherical object (Fig. 4E, fig. S36, and movie S4). In parallel, five 
sensor arrays were activated, displaying multiplexed tactile readings 
and surface TNT levels (Fig. 4, F and G).

The use of the M-Bot for multiplexed physicochemical robotic 
sensing was further evaluated on an OP-contaminated cylindrical 
surface (Fig. 4H). During the experiment, 14 sensor arrays on 
e-skin-R were activated. The tactile and OP sensor responses from 
each sensor, along with the corresponding color mapping of their 
distributions across the three-dimensional (3D) surface, are dis-
played in Fig. 4 (I and J, respectively) (detailed data are demon-
strated in figs. S37 and S38). We anticipate that by further increasing 
the number and density of the multimodal sensor arrays, more 
accurate and informative data can be obtained from arbitrary ob-
jects and surfaces.

Evaluation of an e-skin-R–enabled M-Boat for autonomous 
source tracking
The multimodal robotic sensing platform was further generalized 
onto an autonomous robotic boat capable of tracking pollutants, 
explosives, chemical threats, and biological hazards for risk preven-
tion and mitigation, which is an important topic in civil security 
(7, 44). In this regard, our printed multimodal e-skin-R technology 
was adapted onto a multimodal sensing robotic boat (M-Boat) for 
real-time hazard detection and to autonomously locate the source 
of water-based chemical leakages (Fig. 5A). 3D printed from simple 
computer-aided designs, the M-Boat contains an inkjet-printed 
multimodal sensor array with one temperature and three chemical 
sensors, two electrical motors (for boat propulsion and steering), 
and a printed circuit board (PCB) for data collection, signal pro-
cessing, and motor control (Fig. 5, B to D, and fig. S39). The pro-
pulsion of the M-Boat can be precisely controlled by adjusting the 
individual duty cycle of pulsed voltages supplied to each motor 
(Fig. 5E, fig. S40, and movie S5). For source detection, an A* search 
algorithm (45) was implemented for autonomous decision-making 
while searching for the maximum concentration of the chemical 
leakage (Fig. 5, F and G, fig. S41, and Supplementary Methods). At 
each decision point, the sensors can detect small traces of the chemi-
cal leak in three equidistant locations around the boat. With this 
input, the algorithm calculates the optimal direction to travel using 
the gradient vector, indicating the direction of the highest concen-
tration, and a heuristic estimate of the diffusion based on an inter-
polated map from previous points. By using the heuristic map in 
parallel with the gradient, the algorithm takes advantage of both the 
past and present results to precisely predict the spatial location of 
the source. The performance of the M-Boat was evaluated through 
simulations and experimentally in water tanks containing various chemi-
cal gradients induced by a low pH-corrosive fluid (Fig. 5, H and I, 
fig. S42, and movie S6) and OP leakage (Fig. 5, J and K). In the water 
tank, the M-Boat performed real-time detection of the surrounding 
analyte concentrations, automatically adjusting its trajectory based 
on the A* algorithm, to successfully identify the leakage source. The 
M-Boat was also able to perform continuous hazard analysis and 
autonomous leakage tracking in seawater (fig. S43 and movie S6). 
The surrounding pH and ionic strength of a real-world sample 
matrix (e.g., lake water or seawater) did not show substantial influ-
ence on the sensor performance (fig. S44). When necessary, more 
real-time calibration mechanisms for precise hazard analysis can be 
introduced by incorporating more related biosensors (e.g., pH and 
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conductivity sensors) into the e-skin-R. With more advanced robotic 
control and sensing designs, the M-Boat platform could serve as an 
important basis for intelligent path planning and decision-making 
of autonomous vehicles.

DISCUSSION
Here, we have described a human-machine interactive e-skin–
based robotic system (M-Bot) with multimodal physicochemical 
sensing capabilities. The mass-producible flexible sensor arrays 
allow for high-performance on-site monitoring of temperature, 
tactile pressure, and various hazardous chemicals (in both dry phase 
and liquid phase) such as explosives, OPs, and pathogenic proteins. 
The integration of such multimodal sensors onto a robotic e-skin 
platform provides autonomous systems with interactive cognitive 
capabilities and substantially broadens the range of tasks that robots 
can perform, such as combating infectious diseases like COVID-19.

Existing robotic sensing technologies are largely limited to monitor-
ing physical parameters such as temperature and pressure. To achieve 
high-performance chemical sensing, nanomaterials are commonly 

used via manual drop-casting methods, which could lead to large 
sensor variations. Moreover, most electrochemical sensing strategies 
require detection in aqueous solutions, making them impractical 
for dry-phase robotic analysis. Now, there are no reported scalable 
low-cost manufacturing approaches to prepare robotic physicochem-
ical sensors. In this work, we proposed a scale solution to fabricate 
flexible, multifunctional, and multimodal sensor arrays prepared en-
tirely by high-speed inkjet printing. Custom- developed functional 
nanomaterial inks are designed and optimized to achieve highly sen-
sitive and selective sensors for the specific hazardous target analytes. 
The hydrogel-coated printed nanobiosensors allow for efficient dry-
phase chemical sampling and rapid on-site hazard analysis on a 
robotic platform.

Manufactured using the same approach, e-skin-H ensured stable 
contact with the soft human skin for reliable recording of neuro-
muscular activity to facilitate remote robotic sensing and control. 
To minimize the amount of data collected and analyzed for human- 
robotic interaction, AI and smart algorithms were applied to decode 
incoming information and efficiently predict and control robotic 
movement. An in-depth analysis into each sEMG channel’s individual 
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contribution to the machine learning model was presented, allow-
ing future researchers to optimize the number of electrodes needed 
for robotic control. Using the SHAP analysis, we further untangled 
the hidden overlapping information between each channel’s features 
and categorized which features present the most nonoverlapping 
information for gesture prediction. For the M-Bot, machine learn-
ing gesture prediction via e-skin-H was further coupled with user- 
interactive tactile and threat alarm feedback that allow seamless 
human-machine interaction for the remote deployment of robotic 
technology in extreme or contaminated environments. To obtain 
such real-time results, the robotic platform’s data acquisition, signal 
processing, feature extraction, and gesture prediction of the sEMG 
signals were performed with millisecond-level time after the gesture 
was complete. The M-Boat similarly used a smart A* algorithm for 
autonomous source detection, minimizing the boat’s path, and sub-
sequently, time and energy, in finding potentially hazardous chem-
ical leaks. In these applications, the systems demonstrated real- time 
autonomous movement, all within a low-cost mass-producible sys-
tem, lowering the barrier for real-time robotic perception.

This human-machine–interactive robotic sensing technology 
represents an attractive approach to develop advanced flexible and 
soft e-skins that can reliably collect vital data from the human body 
and the surrounding environments. Full system integration to 
achieve high-speed, wireless, and simultaneous multichannel physico-
chemical sensing is strongly desired for future field deployment and 
evaluation. Moreover, we envision that, by integrating a high density 
and new types of multimodal sensors, this technology could sub-
stantially enhance the perceptual capabilities of future intelligent 
robots and pave the way to numerous new practical wearable and 
robotic applications.

MATERIALS AND METHODS
Materials
Graphite flake was purchased from Alfa Aesar. Sodium nitrate, potassium 
permanganate, hydrogen peroxide, potassium hexacyanoferrate(III), 
citric acid, chloroplatinic acid, PDMS, zirconium(IV) chloride, aniline, 
gelatin, paraoxon-methyl, TNT solution, 4-nitrophenol, 2- nitrophenyl 
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octyl ether, 2-nitroethanol, 2-nitropropane, 4-nitrotoluene, 2,4- 
dinitrotoluene, poly(pyromellitic dianhydride-co-4,4′-oxydianiline) 
amic acid (PAA) solution [12.8 weight % (wt %)], 1-methyl-2- 
pyrrolidinone (NMP), N-hydroxysulfosuccinimide sodium salt 
(Sulfo-NHS), N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide 
hydrochloride (EDC), 2-(N-morpholino)ethanesulfonic acid hydrate 
(MES), potassium permanganate (KMnO4), bovine serum albumin 
(BSA), human immunoglobulin G (IgG), and lysozyme were 
purchased from Sigma-Aldrich. Sodium chloride, sulfuric acid, 
hydrochloric acid, disodium phosphate, 1,3,5-benzenetricarboxylic 
acid (H3BTC), formic acid, N,N′-dimethylformamide (DMF), 
potassium ferricyanide, propylene glycol, isopropyl alcohol (IPA), 
and phosphate-buffered saline (PBS) were purchased from Thermo 
Fisher Scientific. His-tagged SARS-CoV-2 S1 (PNA002), anti–Spike-
RBD human monoclonal antibody (IgG) (S1-IgG, AHA013), 
SARS-CoV S1 (40150-V08B1), SARS-CoV nucleocapsid protein 
(NP; 40143-V08B), and SARS-CoV-2 NP (40588-V08B) were 
purchased from Sanyou Biopharmaceuticals. AgNW suspension 
(20 mg ml−1 in IPA) was purchased from ACS Material LLC. Silver 
ink (25 wt %) and carbon ink (5 wt %) were purchased from 
NovaCentrix. Gold ink (10 wt %) was purchased from C-INK Co. Ltd. 
Carboxyl-functionalized multiwalled CNT ink (2 mg ml−1; Nink-1000) 
was purchased from NanoLab Inc. PI film (12.5 m) was purchased 
from DuPont.

Preparation and characterizations of print inks
To prepare the Pt-graphene ink, GO was first prepared following a 
modified Hummer’s method (46). One gram of graphite flake was 
mixed with 23  ml of H2SO4 for more than 24 hours, and then 
100 mg of NaNO3 was added inside. Subsequently, 3 g of KMnO4 
was added below 5°C in an ice bath. After stirring at 40°C for another 
30 min, 46 ml of H2O was added while the solution temperature was 
slowly increased to 80°C. In the end, 140 ml of H2O and 10 ml of 
H2O2 were introduced into the mixture to complete the reaction. 
The GO was washed with 1 M HCl and filtered. After dried under 
vacuum at 60°C, a GO (2 mg ml−1) suspension was prepared followed 
by the addition of 5 mM chloroplatinic acid under sonication. Last, 
the suspension was mixed with propylene glycol (80:20, v/v) to form 
the Pt-graphene ink.

The MOF-808 was synthesized solvothermally. Briefly, H3BTC 
(0.236 mM) and ZrCl4 (1 mM) were mixed with 15.6 ml of the DMF 
and formic acid (1:0.56, v/v) solvent and sonicated for 20 min. 
Then, the mixture was transferred to a 25-ml Teflon-lined autoclave 
and kept at 120°C for 12 hours. After the reaction, the autoclave was 
naturally cooled to room temperature. The product was washed 
with DMF and methanol and then dried under vacuum at 60°C. Last, 
a MOF-808 suspension in deionized (DI) water was prepared and 
mixed with propylene glycol (80:20, v/v) to form the MOF-808 ink.

The AgNWs ink was prepared by diluting the AgNW suspension 
with IPA to 2 mg ml−1 and sonicating it for 10 min. The CNT ink 
was prepared by mixing the commercial CNT ink (2 mg ml−1) with 
propylene glycol (80:20, v/v). PAA ink was prepared by diluting the 
commercial PAA solution with NMP to 3 wt %. Commercial silver 
and carbon inks were used as received.

The dynamic viscosity (), density (), and surface tension () 
for all inks were characterized before printing. Dynamic viscosity 
was characterized with an Anton Paar MCR302 rheometer. Surface 
tension was measured with a Ramé-Hart contact angle goniometer 
using the equation

   =   gR  0     2  /   (1)

Here, ∆ is the density difference between air and inks, g is the grav-
itational acceleration, R0 is the radius of curvature at the drop apex, 
and  is the shape factor.

Fabrication and assembly of the soft inkjet-printed e-skin-R
The fabrication process of the inkjet-printed e-skin-R is illustrated 
in fig. S1. The PI substrate was cut with kirigami structures by auto-
matic precision cutting (Silhouette Cameo 3). A 2-min O2 plasma 
surface treatment was performed with Plasma Etch PE-25 (10 to 
20 cm3 min−1 O2, 100 W, 150 to 200 mtorr) to enhance the surface 
hydrophilicity of the PI substrate. The multimodal sensor arrays on 
e-skin-R were fabricated via serial printing of silver (interconnects 
and reference electrode), carbon (counter electrode and temperature 
sensor), PI (encapsulation), and target-selective nanoengineered 
sensing layers (e.g., AgNWs, Pt-graphene, Au, and MOF-808) using 
an inkjet printer (DMP-2850, Fujifilm). The ink composition, charac-
terizations, and thermal annealing conditions are shown in table S1. 
Thirty layers of AgNWs were printed on an N-PDMS substrate 
(cured on a 1000-mesh sandpaper) to form the piezoresistive tactile 
sensors. While printing, the plate temperature was set to 40°C to 
ensure the rapid vaporization of the IPA solvent. The AgNWs/
N-PDMS were cut to semicircle shape and set on the e-skin.

For preparing biohazard S1 protein sensor (fig. S17), a CNT film 
was printed on the IPCE first. The carboxylic groups of multiwall 
CNTs were activated to NHS esters, by drop-casting 10 l of EDC 
(400 mM) and NHS (100 mM) in MES buffer (25 mM, pH 5) for 35 min. 
In the next step, 5 l of anti–Spike-RBD antibody (250 g ml−1) in 
PBS were dropped on the modified electrode and incubated for 
2 hours. Next, 10 l of 1% BSA in PBS were dropped and incubated 
for 1 hour to deactivate residual NHS esters. The modified sensors 
were stored in the refrigerator until use.

To assemble the robotic e-skin, the pins of the finger printed 
e-skin were connected with the bottom printed silver connections 
of palm part through a z axis conductive tape (3M), and then 
e-skin-R was set on a robotic hand printed with a 3D printer (Mars 
Pro, Elegoo Inc.).

Characterizations of the multimodal robotic sensing 
performance of e-skin-R
The printed biosensors were characterized with cyclic voltam-
metry (scan rate: 50 mV s−1, unless otherwise noted), DPV, and 
amperometric current (i)-time (t) through an electrochemical 
workstation (CHI 660E). McIlvaine buffer solutions (pH 6.0) 
were used to prepare the analyte solutions. A commercial Ag/AgCl 
reference electrode (CHI111) was used for characterizing the printed 
sensing electrodes in the solution, whereas printed Ag solid-state 
electrodes were used for hydrogel-based sensor characterization 
(there was an ~0.1-V difference between these two types of ref-
erence electrodes in McIlvaine buffer). To quantify the electro-
chemical performance and the electrochemical surface areas, the 
print electrodes were tested in 5 mM K3Fe(CN)6 and 1 M KCl with 
scan rates of 5 mV s−1 from −0.1 to 0.5 V.

For TNT and OP sensors, the conditions of nDPV measurements 
include a scan range of −0.15 to −0.5 V, an incremental potential 
of 0.004 V, a pulse amplitude of 0.05 V, a pulse width of 0.05 s, and 
a pulse period of 0.5 s. The reduction peaks of nDPV curves were 
extracted using a custom-developed iterative baseline correction 
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algorithm. To prepare the electrolyte-loaded hydrogel for analyte 
sampling and sensing, 0.250 g of gelatin powder, 0.075 g of KCl, 
0.071 g of citric acid, and 0.179 g of disodium phosphate were mixed 
in 10 ml of DI water and stirred at 80°C for 15 min. The hydrogel 
was stored and aged overnight. The gelatin electrolyte- loaded hydrogel 
was coated on the printed biosensors for dry blot detection.

For S1 protein detection, the modified electrode was incubated 
with 10 l of S1 protein in PBS for 10 min, and the DPV measure-
ments ranged from −0.1 to 0.5 V. The electrochemical signal of the 
sensor before and after antigen binding was measured in 5 mM 
K3Fe(CN)6. The difference between the peak current densities (j) 
was obtained as sensor readout. A sampling hydrogel pad was pre-
pared to demonstrate the feasibility for SAR-CoV-2 virus dry blot 
detection. To perform one-step detection, 10 l of gelatin hydrogel 
[7.5 wt % gelatin, 10 mM K3Fe(CN)6, and 0.2 M phosphate buffer 
(pH 7.0)] was placed onto a dry S1 protein blot [from 10 l of a SARS-
CoV-2 S1 protein droplet (1 g ml−1)]. Such amount of S1 protein 
could potentially be found in the saliva droplet of a patient with 
COVID-19 (47). For dry-phase sensing selectivity study, the dry pro-
tein blots were created with the same amount of interference proteins 
(10 l, 1 g ml−1). The electrochemical signal of the gel was recorded 
immediately and 10 min after joining the biosensor with the gel.

The temperature sensor characterization was performed on a 
ceramic hot plate (Thermo Fisher Scientific), and an amperometric 
method (with an applied voltage of 2 V) was used to detect the tem-
perature response. The piezoresistive tactile sensor characterization 
was also applied with a constant voltage of 2 V to record the current 
response under various pressure loads.

The scanning electron microscopy (SEM) images of the electrodes 
were obtained by a field-emission SEM (FEI Nova 600 NanoLab). 
Energy-dispersive spectroscopy (EDS) mapping were obtained by 
an EDS spectrometer (Bruker Quantax EDS).

Fabrication and assembly of e-skin-H
The fabrication process of e-skin-H was illustrated in fig. S26. A 
2-min O2 plasma surface treatment was performed with Plasma 
Etch PE-25 to enhance the surface hydrophilicity of the PI substrate. 
Silver interconnects were printed with DMP-2850. The PI substrate 
without the printed patterns were removed with laser cut using a 
50-W CO2 laser cutter (Universal Laser Systems). The optimized 
laser cutter parameters were power of 10%, speed of 80%, and pixels 
per inch (PPI) of 1000 in vector mode. After cleaned with ethanol 
and dried, the remaining patterns were transferred onto a 70-m-
thick PDMS substrate and then encapsulated with another layer of 
PDMS film as well (with sEMG and electrical stimulation electrodes 
exposed). An adhesive electrode gel (Parker Laboratories Inc.) was 
spread onto the electrodes before placing on human participants.

Evaluation of the human-machine interactive  
multimodal sensing robot
To evaluate the performance of the M-Bot, the e-skin-R–interfaced 
3D printed robotic hand was assembled onto a five-axis robotic arm 
(Innfos Ltd.). The e-skin-H was then set around a human participant’s 
forearm after cleaning the skin with alcohol swabs. The sEMG data 
were acquired with four channels (three sEMG electrodes in each 
channel) through an open-source hardware shield (Olimex). The 
signals were sampled as integers between 0 and 1023 by a 10-bit 
analog-to-digital converter (ADC) and then processed through a 
serial (cluster communication) port. Each channel was then scaled 

back into voltages between 0 and 5 V. Although the robotic arm 
control was performed in real time, data processing was performed 
asynchronously to signal acquisition. During processing, the data 
were first put through a high-pass filter with a cutoff frequency of 
100 Hz. The points were subsequently downsized using an RMS 
filter (batch size: 400 points and step size: 10 points). The peaks 
detected after processing were used as features for the machine learn-
ing model. Overlapping peaks from each channel (peaks within a 
half-peak width away) were categorized as a single group. If multi-
ple peaks were detected in a single channel’s set, then the first peak 
was used. The KNN training model was built using 60 samples per 
each of the six gestures. The training and testing datasets were 
divided 2:1, respectively, and were randomly selected using an equal 
representation of each gesture. After the model was developed, it 
was further evaluated for accuracy using new data from each gesture. 
The laser proximity sensor (LPS) (TOF10120) was operated through 
a customized interactive control software in Python (Python 3.8). 
For dry blot threat detection, TNT and OP threat coatings were 
created by spraying analyte vapor onto the selected objects in a 
fume hood. Multimodal sensing data collected during robotic sensing 
operations were collected through a portable electrochemical work-
station (PalmSens4) with a multiplexer.

The validation and evaluation of the M-Bot were performed 
using human participants in compliance with all the ethical regula-
tions under protocols (ID 19-0895) that were approved by the Insti-
tutional Review Board at the California Institute of Technology. 
Three participates were recruited from the California Institute of 
Technology’s campus and the neighboring communities through 
advertisement. All participants gave written informed consent 
before study participation.

Machine learning data analysis
For each gesture, all five features were extracted from the associated 
peak in the RMS-filtered EMG data: height, average area, SD, average 
energy (intensity), and maximum slope. The features extracted were 
calculated in reference against their baselines, which were determined 
via a binary search of the previous data in 50-ms intervals.

After feature extraction, SHAP values were used to evaluate 
the performance enhancement of each feature extracted and EMG 
channel used. In addition to SHAP values, the average testing accu-
racy across 5000 training sessions was taken for each permutation 
of features and EMG channels, which supplemented the SHAP values 
in providing further insight into which channels and features 
contained nonoverlapping beneficial information for gesture deter-
mination. For each of the 5000 trials, the testing points represented 
33% of the dataset, with each gesture in the test set being propor-
tionally represented in the full dataset. For the arm EMG dataset, 
this amounted to 387 movements split across six gestures; of those 
points, the KNN model was fit using 257 training points and scored 
on the remaining 128 testing points (testing and training were 
proportionally stratified across all six gestures).

Evaluation of the M-Boat
To evaluate the performance of the M-Boat, the e-skin-R was 
assembled onto a 3D printed boat with a four-layer PCB, as shown 
in Fig.  5  (B  and  C). On the PCB, a Bluetooth low-energy (BLE) 
module (CYBLE-222014-01, Cypress Semiconductor) was used for 
controlling the electrochemical front end through a serial peripheral 
interface (SPI). This module was also used to control the motor 
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driver through general purpose input/output (GPIO) pins and 
pulse width modulation (PWM) and to transmit data over BLE. An 
electrochemical front end (AD5941, Analog Devices) was set up via 
SPI to perform multiplexed electrochemical measurements with the 
sensor arrays and to send the acquired data to the BLE module for 
signal processing and BLE transmission. A BLE dongle (CY5677, 
Cypress Semiconductor) was used to establish a BLE connection 
with the M-Boat and to securely receive the sensor data via BLE 
indications. An A* algorithm was used to analyze the sensor data 
and compute the next M-Boat’s movement path with the optimal 
motor speed. The calculated motor speed information was sent 
back to the BLE module in real time for the pulse width–modulated 
control of two motors (Q4SL2BQ280001) through a dual dc motor 
driver (TB6612FNG, Toshiba). The entire system was powered by a 
3.7-V Li-ion battery (40 mAh).

For the OP chemical threat tracking experiment, a natural diffu-
sion gradient was generated by 10 droppings of 20 l of 0.1 M OP 
into a 0.1 M NaCl solution tank. The seawater studies were per-
formed in seawater samples collected from the Pacific Ocean in 
Los Angeles. The M-Boat was set into the tank after 30 min. For the 
corrosive acidic threat tracking experiment, pH sensors were modi-
fied on e-skin-R instead. Briefly, a polyaniline pH-sensitive film was 
electropolymerized on the IPCE in a solution containing 0.1 M aniline 
and 0.1 M HCl using a CV from −0.2 to 1 V for 25 cycles at a scan rate 
of 50 mV s−1. Then, 100 l of H2SO4 (2 M) as the leakage source was 
dropped into the middle of the water tank. Last, the M-Boat was set 
after 45/30 min with/without barriers in the tank, respectively.

Statistical analysis
All quantitative values were presented as means ± SD of the mean. 
For all sensor evaluation plots, the error bars were calculated on the 
basis of the SD from three sensors. For the hydrogel stability study, 
the error bars were calculated on the basis of the SD from three 
hydrogels. For bending tests of the sEMG electrodes, the error bars 
were calculated on the basis of the SD from three independent mea-
surements. For the machine learning analysis of the sEMG data, the 
model was trained on the same data across 5000 trials of randomly 
splitting the points between training and testing data. The accuracy 
profile of this training was then fit to a skewed normal distribution, 
where the mean was extracted.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scirobotics.abn0495
Methods
Figs. S1 to S44
Tables S1 to S3
Movies S1 to S6

View/request a protocol for this paper from Bio-protocol.
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